Технология непрерывной намотки стеклопластиковых труб. Способы производства труб из стеклопластика

Ограничивающим фактором широкого применения коррозионностойких полиэтиленовых труб на нефтепромыслах является их относительно низкая несущая способность (рабочие давления транспортируемой среды не превышают 1,0 МПа). Для расширения областей применения полиэтиленовых труб при более высоких давлениях и для работы в условиях Крайнего Севера разработаны и успешно применяются на нефтегазопромыслах комбинированные трубы нового поколения с рабочим давлением до 20,0 МПа и равнопрочными с телом трубы соединениями. Усилие полиэтиленовой оболочки обеспечивается формированием на ней стеклопластиковой оболочки - бипластмассовые трубы (БПТ).


В настоящий момент имеется опыт применения стеклопластиковых труб, использующихся для транспортировки шламов, абразивосодержащих, химически активных сред, нефти и газа, а также единичные случаи использования насосно-компрессорных и обсадных труб из стеклопластиков в артезианских и нефтегазовых скважинах глубиной до 2600 м.

Широкое использование стеклопластиков сдерживается на данный момент отсутствием научно обоснованных положений, позволяющих еще на этапе конструирования сформулировать требования к характеристикам таких труб и апробированных методик расчета, учитывающих как специфику свойств самого материала труб, так и конкретных условий их эксплуатации.

Таким образом, разработка новых и адаптация уже существующих методик конструирования и расчета обсадных труб, создание многослойных оболочек из стеклопластиковых композиционных материалов, а так же исследование поведения стеклопластикового материала под нагрузкой в условиях, близких к эксплуатационным, становится в настоящее время актуальным и современным фактором развития нефтегазовой отрасли.

БИПЛАСТМАССОВЫЕ ТРУБЫ

В 2000 году на базе АОЗТ "Композит-нефть" (г. Пермь) были выбраны материалы и предложена новая конструкция бипластмассовых труб, внешняя силовая оболочка которых состоит из нескольких слоев однонаправленного стеклопластика, внутренний герметизирующий слой - из полиэтилена низкого давления (ПЭНД), для обеспечения адгезии между данными слоями разработана специальная композиция на основе сэвилена.

Предложены новые конструкции разъемного и неразъемного стыка и соединительных деталей бипластмассовых труб, обеспечивающие равно-прочность и герметичность внутрипромысловых нефтепроводов высокого давления (до 20 МПа).

Разработана технология и оборудование для серийного автоматизированного производства бипластмассовых труб и соединительных деталей.

Технология изготовления бипластмассовых труб внедрена в серийное производство. В г. Чернушка Пермской области развернуто производство бипластмассовых труб и соединительных деталей объемом 180 км в год. Разработана инструкция по монтажу, эксплуатации и ремонту трубопроводов, по которой смонтированы и в настоящее время успешно эксплуатируется более 1000 км трубопроводов из бипластмассовых труб по стоимости на 25-30% ниже зарубежных аналогов в ОАО "ПК ЛУКОЙЛ", ООО "ЛУКОЙЛ-Пермнефть", ОАО "Удмуртнефть", ОАО "Ставрополь-нефтегаз" на месторождеггиях Пермской и Тюменской областей, Ставропольском крае, Удмуртии. Оценка экономической эффективности замены металлических трубопроводов на трубопроводы из разработанных бипластмассовых труб показала, что вследствие низких расходов на строительство и эксплуатацию последних затраты на приобретение более дорогих бипластмассовых труб окупаются через пять лет.

СТАЛЬНЫЕ ТРУБЫ С ОБОЛОЧКОЙ ИЗ СТЕКЛОПЛАСТИКА

На "Московском трубозаготовительном комбинате" (www.mostzk.ru) в 2015 года было освоено эпоксидное покрытие для стальных газопроводов.

В марте 2015 года было выпущено десятки километров труб диаметром 426 мм. Данное покрытие труб заинтересует потребителей прокладывающих наземные стальные газопроводы.



В настоящее время российский рынок слабо знаком со стеклопластиковыми трубами. Между тем потенциальный спрос на данную продукцию огромен. До 2010 года объем потребления стеклопластиковых труб будет возрастать на 30% в год. Затем спрос будет расти еще более быстрыми темпами. В качестве потенциальных производителей могут рассматриваться все производители стекловолокна.

Основные характеристики стеклопластиковых труб

Во всем мире подземные коммуникации стареют. Миллионы водопроводных и канализационных труб требуют реконструкции. Проблема имеет мировой характер. Там, где ее нет, обычно нет и самих коммуникаций, либо они только должны быть построены (именно так обстоит сейчас дело во многих развивающихся странах), но это не делает проблему, стоящую перед этими странами менее сложной: им необходимо выбрать, какие же материалы использовать для того, чтобы избежать той ситуации, которая сложилась в развитых странах.

В большинстве случаев, причиной возникновения проблем является коррозия. Внутренняя незащищенная поверхность бетонных канализационных коллекторов быстро разрушается под действием серной кислоты, образующейся в процессе окисления сероводорода. Разрушению внешней поверхности металлических трубопроводов способствуют воздействие грунта и блуждающие токи. Металлические трубы могут корродировать, если проложены в плохо дренированных и слабо эрируемых нестабильных грунтах. В присутствии сульфат-редуцирующих бактерий процесс коррозии ускоряется.

Разрушительные процессы, описанные выше, могут быть существенно снижены или совсем ликвидированы при правильном выборе материалов, устойчивых к коррозии. И выбор этот очень прост – стеклопластиковые трубы.

Не поддающиеся гальванической и электролитической коррозии, стеклопластиковые трубы являются идеальным выбором для систем подачи воды, а доказанное сопротивление кислотной среде сливов санитарной канализации позволяет использовать данный вид труб в системах сточных вод. За последние 20 лет эти трубы были выбраны для многих канализационных сетей региона Среднего Востока, известного наиболее агрессивными в мире сточными водами.

Более 35 лет в мире широко применяются стеклопластиковые трубы как наиболее эффективное и экономичное решение проблемы увеличения срока эксплуатации, надежности и безопасности трубопроводных систем, обновления устаревшего трубопроводного фонда.

Стеклопластики представляют собой композитные конструкционные материалы, сочетающие высокую прочность с относительно небольшой плотностью. В разных отраслях промышленности они успешно конкурируют с такими традиционными материалами, как металлы и их сплавы, бетон, стекло, керамика, дерево. В ряде случаев конструкции, отвечающие специальным техническим требованиям, могут быть созданы только из стеклопластика. Изделия из этого материала получили особенно широкое распространение в аппаратах, предназначенных для работы в экстремальных условиях – в судостроении, авиации и космической технике, оборудовании нефтехимической и газодобывающей отраслей.

Мировым лидером в производстве и потреблении изделий из композитных материалов являются США, где их промышленное производство было налажено еще в 1944 г.

Стеклопластиковые трубы были впервые использованы в конце 50-х. В 70-х годах на Западе они стали обычным решением проблемы коррозии трубопроводов.

Под трубами из полимерных композитных материалов (ПКМ) понимаются стеклопластиковые, базальтопластиковые, органопластиковые или иные трубы (в зависимости от типа армирующего наполнителя) с полимерным связующим из термореактивного материала. Для композитных труб применяются, как правило, эпоксидные или полиэфирные связующие.

Для изготовления труб, в зависимости от назначения, места и способа прокладки могут применяться различные материалы:

  • Базальтовые, стеклянные или углеродные волокна;
  • Синтетические волокна из различных материалов;
  • Резины, резинопласты и фторопласты различных марок;
  • Связующие материалы на базе различных смол и клеевых композиций.

Высокие удельные показатели прочности и жесткости волокнистых композиционных материалов наряду с химической стойкостью, сравнительно малым весом и другими свойствами, сделали эти материалы привлекательными для изготовления трубопроводов различного назначения. Применение стеклопластиковых труб взамен металлических увеличивает срок службы трубопроводов в 5-8 раз, исключает применение антикоррозионных защитных средств, в 4-8 раз снижает массу трубопровода, исключает применение сварочных работ. При этом остается открытым вопрос применения стеклопластиковых труб работающих при повышенных температурах (до 120°С).

Трубы из стеклопластика классифицируются по жесткости и номинальному давлению и по диаметру.

Жесткость трубы определяется ее способностью сопротивляться нагрузкам от окружающего грунта и движения транспорта, а также отрицательным внутренним давлениям.

Чем толще стенка, тем выше жесткость и способность к сопротивлению нагрузкам. По жесткости в разных системах стандартизации трубы делятся на следующие классы.

Показатели жесткости трубы в различных системах стандартизации

Источник: данные «American Composites manufactures Association» (США).

По давлению трубы классифицируются по номинальному давлению (PN), под которым подразумевается величина безопасного давления воды в МПа при +20 °С в течение нормируемого срока службы (обычно 50 лет).

Например, стандартные стеклопластиковые трубы фирмы Hobas имеют комбинированные характеристики по рабочему давлению и жесткости, показанные в табл. 1.2.

Технологические процессы производства стеклопластиковых труб позволяют изготавливать трубы с внутренним покровным слоем, стойким к воздействию разных сред (табл. 1.3).

В России стеклопластиковые трубы и детали в зависимости от температуры, содержания твердых компонентов, химического состава транспортируемого вещества изготовляют с различными защитными внутренними покрытиями. Их подразделяют на следующие виды:

а – для жидкостей с абразивными компонентами,
х – для химически агрессивных сред,
п – для питьевой холодной воды,
г – для горячей (до 75 °С) воды хозяйственно-питьевого водоснабжения,
с – для других сред.

Толщина слоя внутреннего защитного покрытия составляет от 0,5 до 3 мм, в зависимости от вида покрытия и транспортируемой среды.

В табл. 1.4 приведены физико-механические свойства стеклопластиковых труб.

Трубы и соединительные детали из стеклопластика имеют обозначения и изготавливаются под стыковые соединения следующих типов:

Ф – фланцевый,
Б – бугельный,
М – муфтовый,
МК – муфтовый клеевой,
Р – раструбный,
С – специальный (например, резьбовой).

Сортаменты стеклопластиковых труб довольно обширны. Так, например, трубы по ТУ 2296 250-24046478 95 на эпоксидном связующем изготовляются диаметром от 60 до 400 мм на номинальное давление от 0,6 до 4,0 МПа. По ТУ 2296011-26598466 96 изготовляются стеклопластиковые трубы на поли­эфирном связующем с раструбношиповым типом соединения диаметром от 50 до 1000 мм на номинальное давление 0,6, 1,0 и 1,6 МПа.

Комбинированные характеристики по рабочему давлению и жесткости стеклопластиковых труб

Рабочее давление (МПа) Класс по давлению (PN) Класс по жесткости (SN) Обозначение
0,4 4 2500 4/2500
0,6 6 5000 6/5000
1,0 10 5000 10/5000
1,0 10 10000 10/10000
1,6 16 10000 16/10000
2,0 20 10000 20/10000
2,5 25 10000 25/10000

Зависимость рабочей температуры и предельного значения рН от внутреннего слоя стеклопластиковой трубы

Источник: данные компании «Hobas».

Физико-механические свойства стеклопластиковых труб на эпоксидном связующем, по данным АО «Прогресс», ТУ 2296-250-24046478-95

Наименование показателя Трубы спиральной намотки с углом намотки 55 Трубы непрерывной намотки армирование 2 1
Предел прочности при растяжении в тангенциальном направлении МПа не менее 240 180
Предел прочности при растяжении в осевом направлении МПа не менее 120 80
Модуль упругости в тангенциальном направлении, Мпа, не менее 25000 19000
Модуль упругости в осевом направлении МПа не менее 12000 8000
Коэффициент линейного теплового расширения (осевой) 1/°С, не более 1 8х10 5 2 1х10"
Плотность кг/м 3 1800 – 1900 1600 - 1700
Весовое соотношение стеклонаполнитель связующее 65 - 72/35 - 28 50 – 55 / 50 – 40
Тангенциальные напряжения при растяжении МПа не более 50 35
Осевые напряжения при растяжении Мпа не более 24 16
Деформация при растяжении мм/м не более 0002 0002

Источник: данные компании АО «Прогресс»

Виды стеклопластиковых труб производимых в мире

Типы стеклопластиковых труб различных производителей можно разделить на три группы по следующим признакам:

  1. Тип связующего (матрицы): эпоксидное или полиэфирное;
  2. Тип соединения труб: клеевое или механическое;
  3. Конструкция стенки трубы: чистый стеклопластик (без футеровки), стеклопластик с пленочным слоем (футерованные трубы), многослойные конструкции.

Существенным различием между стеклопластиковыми трубами различных производителей является конструкция стенки.

Однослойная стеклопластиковая труба, выполняемая без футеровки, является классическим примером применения стеклопластиковых труб в мире. Однако, применение такой конструкции в жестких климатических и сложных рельефных условиях (например, в Западной Сибири) осложнено низкими температурами окружающей среды и внешними механическими воздействиями на трубопровод от подвижек грунтов. Для снижения влияния этих факторов требуется уделять особое внимание разработке траншеи при проведении строительно-монтажных работ: разрабатывать траншею больших размеров, выполнять песчаную подушку трубопровода и т.п. Стоимость однослойных труб может быть несколько ниже стоимости труб, футерованных пленочными материалами и многослойных труб, однако стоимость выполнения строительно-монтажных работ значительно выше. Кроме того, трубопроводы, изготовленные из однослойных труб, менее надежны в эксплуатации. Эти обстоятельства существенно снижают технико-экономический эффект от применения стеклопластиковых труб однослойной конструкции.

Трубы двухслойной конструкции, футерованные изнутри пленочными материалами, менее подвержены потере герметичности в условиях пролегания трубопроводов в нестабильных грунтах Западной Сибири.

Однако, за время эксплуатации двухслойных труб в нефтепромысловых трубопроводах, был выявлен ряд серьезных недостатков, требующих изменения конструкции и технологии изготовления трубы:

  • недостаточная адгезия между футеровочным и стеклопластиковым слоем, что не позволяет обеспечить монолитность стенки трубы;
  • нарушение эластичности материала футеровки при низких температурах окружающей среды;
  • отслоение футеровки от стеклопластиковой оболочки трубы при транспортировке по трубам газосодержащих сред (кессонный эффект).

Обеспечение достаточной адгезии к стеклопластику и эластичности внутреннего слоя являются взаимно противоположными проблемами. Лучшая адгезия к стеклопластиковому слою обеспечивается химической сшивкой двух материалов и для этого в качестве футеровки целесообразно применять материал термореактивной природы. Однако, такой материал теряет эластичность при низких температурах и плюсы двухслойной конструкции трубы теряются. Напротив, лучшую эластичность при низких температурах имеет термопластичный материал – полиэтилен, однако осуществить его химическую сшивку со стеклопластиковой оболочкой проблематично. При транспортировке по трубопроводу из двухслойных труб среды, содержащей газ, происходит так называемый кессонный эффект, заключающийся в отслоении внутреннего пленочного слоя от стеклопластика. При разгазировании или растворении газа из транспортируемой среды создаются условия, когда газ проходит через внутренний пленочный слой, скапливается между стеклопластиком и футеровочным слоем и создает давление на футеровку снаружи.

Под действием давления газа между слоями, пленочный слой отслаивается от стеклопластика, в результате чего конструкция трубы нарушается. Данное явление не происходит, если в среде, импортирующейся по трубопроводу, отсутствует газ.

Стеклопластиковые двухслойные трубы предназначены для эксплуатации в трубопроводах, транспортирующих разгазированные среды: трубопроводы перекачки пластовых и сточных вод, водоснабжения, канализации и т.п. Внутренний слой труб может быть из полиэтилена высокого давления (ПВД) - материала, считающегося наиболее химически стойким в средах нефтепромысловых трубопроводов. Адгезия полиэтилена к стеклопластику обеспечивается за счет использования специальной марки полиэтилена, сшивающегося в процессе отверждения трубы, рецептуры эпоксидного связующего и режима термообработки труб. В процессе термообработки обеспечивается одновременная сшивка полиэтилена и отверждение эпоксидного связующего. В результате этого отслоить внутренний полиэтиленовый слой трубы от стеклопластика без разрушения последнего практически невозможно.

Конструкция трехслойных труб отличается от двухслойных наличием внутренней стеклопластиковой оболочки, конструктивно раскрепленной с футеровочным слоем. Внутренняя оболочка не несет нагрузок вдоль оси трубы, и ее конструкция оптимизирована для обеспечения большей прочности в окружном направлении. Внутренняя оболочка предназначена для сглаживания циклически изменяющегося внутреннего давления в трубе, возникающего при растворении или разгазировании содержащегося в транспортируемом продукте газа. Транспортируемая среда проникает в область между внутренней оболочкой и пленочным слоем, создавая тем самым область постоянного давления вблизи футеровки, которое равно рабочему давлению в трубопроводе. За счет того, что давление вблизи пленочного слоя не изменяется, условия проникновения газа через него отсутствуют и кессонный эффект не происходит. Вместе с этим внутренняя оболочка дополнительно повышает жесткость труб и уменьшает температурное воздействие среды на несущий стеклопластик, что также повышает долговечность их использования.

Таким образом, в трехслойной конструкции стеклопластиковой трубы решается большинство вопросов обеспечения надежности и долговечности:

  • механическая прочность и долговечность труб достигается применением композиционного материала – стеклопластика на эпоксидном связующем;
  • надежная стыковка труб в трубопроводе обеспечивается применением механического раструб-ниппельного соединения соответствующего требованиям международных стандартов в данной отрасли;
  • герметичность труб при возникновении внешних нагрузок в процессе эксплуатации и строительства трубопроводов обеспечивается применением эластичного футеровочного пленочного слоя, химическая стойкость которого является эталонной в нефтяных средах;
  • решен вопрос сохранения эластичности футеровки при низких температурах при одновременном обеспечением ее адгезии к стеклопластику;
  • для транспортировки сред с высоким содержанием газа разработана и запатентована уникальная трехслойная конструкция трубы, не имеющая аналогов в мире.

1. Стеклопластиковые трубы однослойные (1С)

Однослойные стеклопластиковые трубы выполнены из высококачественного стеклопластика получаемого методом «мокрой» намотки. В целях увеличения химической стойкости и снижения коэффициента гидравлического сопротивления на внутренней поверхности труб выполнен лайнер.

Лайнер представляет собой двухкомпонентный композит, состоящий из низкоплотного стеклянного материала с пропиткой эпоксидным связующим, содержание которого достигает 60-70% по массе. Толщина лайнера может составлять от 0,2 до 0,8 мм. Основной слой трубы (конструкционный слой) состоит из стеклянных нитей (ровингов) пропитанных эпоксидным связующим. Конструкционный слой обеспечивает заданное соотношение физико-механических характеристик вдоль оси и в окружном направлении трубы.

2. Стеклопластиковые трубы двухслойные (2С)

Двухслойные стеклопластиковые трубы представляют из себя двухслойную конструкцию состоящую из защитного и конструкционного слоев.

Защитный слой выполнен из полиэтилена высокого давления (ПВД). Толщина защитного слоя может составлять от 1 до3 мм. Защитный слой предназначен для повышения химической стойкости трубы и сохранения ее герметичности при действии значительных внешних нагрузок. Конструкционный слой выполнен из высококачественного стеклопластика, получаемого методом «мокрой» намотки стеклянных нитей (ровингов) пропитанных эпоксидным связующим.

Конструкционный слой обеспечивает заданное соотношение физико-механических характеристик вдоль оси и в окружном направлении трубы. По технологии изготовления, конструкционный слой укладывается поверх защитного, и заготовка трубы проходит режим термообработки (полимеризации) в процессе которого оба слоя сшиваются друг с другом, образуя монолитную конструкцию. Соединения труб – механические, изготавливаются как единое целое с трубой.

3. Стеклопластиковые трубы трехслойные (3С)

Трехслойные стеклопластиковые трубы представляют из себя трехслойную конструкцию состоящую из внутренней стеклопластиковой оболочки защитного и конструкционного слоев. Конструктивно внутренняя оболочка независима от сшитых защитного и конструкционного слоев.

Внутренняя оболочка выполнена из стеклопластика методом«мокрой» намотки стеклянных нитей (ровингов) пропитанных эпоксидным связующим. Толщина внутренней оболочки может составлять от 3 до 6 мм в зависимости от внутреннего диаметра трубы. Внутренняя оболочка не несет нагрузок вдоль оси трубы, и ее конструкция оптимизирована для большей прочности в окружном направлении. Внутренняя оболочка предназначена для сглаживания циклически изменяющегося внутреннего давления в трубе возникающего при растворении или разгазировании содержащегося в транспортируемом продукте газа.

Защитный слой выполнен из полиэтилена высокого давления (ПВД). Толщина защитного слоя может составлять от 1 до 3 мм. Защитный слой предназначен для повышения химической стойкости трубы и сохранения ее герметичности при действии значительных внешних нагрузок.

Конструкционный слой выполнен из высококачественного стеклопластика, получаемого методом «мокрой» намотки стеклянных нитей (ровингов), пропитанных эпоксидным связующим до требуемой толщины. Конструкционный слой обеспечивает заданное соотношение физико-механических характеристик вдоль оси и в окружном направлении трубы. По технологии изготовления, на заранее намотанную и отвержденную внутреннею оболочку укладывается разделительный, защитный и конструкционный слои. Далее заготовка трубы проходит режим термообработки (полимеризации) в процессе которого защитный и конструкционный слои сшиваются друг с другом образуя монолитную конструкцию, а перемещение внутренней оболочки вдоль оси трубы конструктивно ограничено. Соединения труб – механические, изготавливаются заодно с трубой.

Фасонные изделия из стеклопластика включают фланцы, тройники, отводы, переходники и могут изготавливаться как стандартными, так и по заказу.

Отличительными особенностями данных трубопроводов являются:

  • высокая устойчивость к воздействию агрессивных сред;
  • устойчивость к воздействию микроорганизмов, ультрафиолетовых лучей и неблагоприятных факторов окружающей среды;
  • высокие механические характеристики;
  • исключение необходимости защиты от электрохимической коррозии;
  • эксплуатация в широком диапазоне температур (от -50°С до +100°С).

Стеклопластиковые трубопроводы имеют четыре вида соединений.

1. Раструбно-шиповое соединение с двойным кольцевым уплотнением.

Обеспечивает быструю и надежную сборку труб и фасонных элементов. Два эластичных кольцевых уплотнения круглого сечения, устанавливаемые в параллельные окружные канавки на шиповой законцовке, обеспечивают герметичность стыка в напорных и безнапорных трубопроводах. Канавки для уплотнений на шиповой законцовке обрабатываются на станке с электронным управлением, что обеспечивает точность посадочных поверхностей. В зависимости от характеристик транспортируемой по трубопроводу среды применяются кольцевые уплотнения из различных марок резиновых смесей. Резиновые кольцевые уплотнения поставляются в комплекте с элементами трубопровода.

2. Раструбно-шиповое соединение с двойным кольцевым уплотнением и стопорным элементом.

Для компенсации действия на трубопровод осевых сил (например, в надземных трубопроводах) в раструбно- шиповом соединении применяется стопорный элемент, который устанавливается через отверстие в раструбе в кольцевые пазы на шиповой и раструбной законцовках и препятствует осевому перемещению элементов трубопровода относительно друг друга. В зависимости от уровня осевых сил стопорный элемент может быть круглого или прямоугольного сечения и выполняться из различных материалов (полиамид, ПВХ, металлический трос). Стопорные элементы, как и резиновые кольцевые уплотнения, поставляются в комплекте с элементами трубопровода.

3. Фланцевое соединение.

Используется для соединения элементов стеклопластикового трубопровода с металлическими трубопроводами и арматурой. Присоединительные размеры стеклопластиковых фланцев выполняются по ГОСТ 12815-80.

4. Клеевое стыковое соединение.

Выполняется путем послойного нанесения на гладкие законцовки труб армирующих стекломатериалов, пропитанных полиэфирным связующим "холодного" отверждения. Соединение обеспечивает герметичность и прочность конструкции в осевом и окружном направлении. В отличие от остальных видов соединения, является неразборным.

Стенка стеклопластикового трубопровода является многослойной конструкцией, включающей три слоя. Внутренний слой (армированный, термоактивный) обеспечивает полную герметичность конструкции и стойкость ее к воздействию агрессивной среды, транспортируемой по трубопроводу. Абсолютная шероховатость внутренней стенки составляет 23 мкм, что позволяет сократить затраты на перекачку транспортируемых по трубопроводам вод и стоков.

Средний слой является силовым и обеспечивает механическую прочность конструкции при совместном действии внутренних и внешних нагрузок в процессе эксплуатации трубопроводов. Внешний слой обеспечивает гладкость внешней поверхности трубопровода и стойкость его в воздействию ультрафиолетовых лучей и неблагоприятных факторов окружающей среды.

Принципиальном моментом в производстве стеклопластиковой трубы является тип связующего материала. Наибольшее распространение в мире получили два вида связующего элемента:

  • Полиэфирное связующее;
  • Эпоксидное связующее.

Отличительные особенности стеклопластиковых труб на обоих типов связующих от стальных труб:

  • идеальная гладкость внутреннего канала, обеспечивающая высокие гидравлические характеристики, снижающие энергозатраты на перекачку транспортируемой среды, и препятствующая образованию отложений;
  • высокая устойчивость к химической и электрохимической коррозии, не требующая специальных средств антикоррозионной защиты, обеспечивающая постоянство гидравлических характеристик и длительный (50 и более лет) срок эксплуатации;
  • низкий вес по сравнению с металлическими, железобетонными и некоторыми другими трубами, что упрощает транспортировку, погрузочно-разгрузочные работы и монтаж трубопровода, и в итоге существенно снижает трудозатраты при его строительстве;
  • устойчивость к внутренним и внешним силовым воздействиям, обеспечивающая стойкость к гидравлическому удару, возможности подводной и подземной прокладки с заглублением до 12–16 м, надежность при перемещениях от усадки грунта;
  • высокая абразивостойкость, препятствующая снижению прочностных характеристик трубы при транспортировке жидкостей, содержащих механические примеси; устойчивость внешней поверхности к воздействию ультрафиолетового излучения и к факторам биологического воздействия;
  • возможность изготовления труб различной длины (от 6 до 18 м), высокое качество соединений без какой-либо предварительной обработки стыков, простота и легкость обработки материала труб, исключение сварки на месте монтажа.

Стеклопластиковые трубы на ПЭФ связующем

Конструкция стенки трубы формируется на основе армированных стекловолокном термореактивных полиэфирных смол и песчаного наполнителя. Применяемая технология позволяет создать структуру стенки трубы с использованием характерных свойств основных сырьевых материалов:

  • непрерывная стекловолокнистая нить и рубленое стекловолокно вводятся для создания стягивающего усилия и осевой прочности;
  • наполнитель (кварцевый песок) используется в центральной части стенки трубы для создания необходимой жесткости;
  • стеклоткани используются для придания необходимых свойств наружному слою трубы.

Таким образом, стенка трубы образуется из связующих и армирующих компонентов, наполнителя, поверхностных усилителей и дополнительных компонентов. В качестве связующих компонентов для создания матрицы композита используются полимеры - ненасыщенные термореактивные полиэфирные смолы. Используемые смолы обладают важными для производимых труб свойствами:

  • отверждение при комнатной температуре;
  • низкая степень токсичности;
  • химическая инертность;
  • прочная сцепка со стекловолокном.

Трубы полимеризируются (отверждаются) с помощью катализаторов на основе органических пероксидов (перекись метилэтилкетона) и акселераторов на основе кобальтовых омыляющих веществ (октоат кобальта). В зависимости от сферы применения труб используются разные типы полиэфирных (изофталевая, ортофталевая, бисфенольная, винилэфирная) и других смол.

Армирующими компонентами являются различные виды стеклопластика, обеспечивающие необходимую прочность, а также коррозионную стойкость трубы. Применяются комбинации непрерывного (нити или жгуты) и рубленого стекловолокна. Ориентация и количество стекловолокна обеспечивает разные механические характеристики труб. Для улучшения эксплуатационных характеристик стеклопластика волокна "проклеиваются", что увеличивает смачиваемость смолы и волокон.

В качестве поверхностных усилителей используются легкие стеклопластиковые покрытия для того, чтобы усилить слои с высоким содержанием смол. Поверхностные оболочки из стекломатов обеспечивает высокую устойчивость поверхностей трубы к воздействию внутренней и внешней среды.

Структура стенки стеклопластиковой трубы



Выпускаемые трубы подразделяются на несколько классов по давлению и удельной прочности, промежуточные классы труб, и трубы, рассчитанные на более высокие характеристики, поставляются по запросу.

Толщина стенки трубы определяется ее структурой, включающей в себя несколько слоев.

Внутренний слой – лайнер (толщиной 0,8–1,2 мм), обеспечивает герметичность, максимальную устойчивость к химической коррозии, к абразивному истиранию, гладкость внутренней поверхности, исключает отложения на стенках трубы. Лайнер выполнен из специальной смолы.

Структурный (несущий) слой, задающий механические свойства, гарантирует устойчивость всей трубы к внутреннему и/или внешнему давлению, к наружной нагрузке в результате транспортировки и установки, к нагрузке почвы, нагрузке потока, к термическим нагрузкам, и т.д. Структурный слой образуется путём нанесения и намотки на частично отвердевший нижний (лайнер) слой:

  • термореактивного полимера (полиэфирной смолы);
  • непрерывной намотки стекловолокна;
  • рубленных стекловолокон;
  • кварцевого песка.

Толщина структурного слоя рассчитывается исходя из заданных параметров трубы. Наружный слой имеет толщину 0,2–0,3 мм или более, служит для защиты трубы от воздействия солнечного света, агрессивной почвы или коррозионной среды. Обычно он состоит из чистого полимера с добавлением (при наземной прокладке трубопровода) ультрафиолетового ингибитора для защиты трубы от воздействия солнечного света.

Трубы на основе ПЭФ устойчивы к коррозии и к химически агрессивным веществам, а потому имеют широкую область применения.

Сферы применения стеклопластиковых труб на полиэфирном связующем.

Применяются как для транспортировки по ним различных сред, так и в качестве конструкционных элементов (опор, колонн, перекладин, оболочек).

История

Появление и выпуск стеклопластиковых труб стали возможными в середине 1950-х годов, когда был освоен промышленный выпуск реактопластичных связующих (прежде всего - эпоксидных смол) и стеклянных волокон. Уже тогда стали очевидными преимущества этих труб: малая масса и высокая коррозионная стойкость. Однако, в указанный период завоевать какую-либо долю рынка трубной продукции они ещё не могли по причине низкой цены на «традиционные» трубные материалы: сталь (в том числе нержавеющую) медь и алюминий. В середине 1960-х годов ситуация начала меняться. Во-первых, резко подорожали легированная сталь и алюминий. Во-вторых, начало добычи нефти на морских шельфах и в труднодоступных районах суши потребовало применения легких и коррозионно стойких труб. В третьих, технологии производства стеклопластиковых труб были усовершенствованы, а характеристики продукции улучшены. В эти годы фирма Ameron (США) освоила крупносерийный выпуск стеклопластиковых труб высокого давления (до 30 МПа) для нефтепромыслов. Трубы имели коммерческий успех и в США появилось множество производителей стеклопластиковой продукции. В 1970-х годах на нефтепромыслах Северной Америки и Ближнего Востока стеклопластиковые трубы производства США получили широкое распространение.

В 1980-х годах интерес к стеклопластиковым трубам появился во всех промышленно развитых странах. Их производство и применение освоили в Европе, Японии, Тайване. Начались эксперименты по применению стеклопластиковых труб и в СССР.

Технологии производства

По состоянию на 2013 год известны четыре принципиально отличающихся технологии производства стеклопластиковых труб:

  • Намотка пропитанной связующим стеклянной арматуры на наружную поверхность технологической оправки (мандрели);
  • Центробежное литье;
  • Центробежное формование из препрега на внутренней поверхности технологической оправки (формы);
  • Пултрузия в зазоре между наружной и внутренней оправками;
  • Экструзия связующего, наполненного в объеме рубленным стеклянным волокном.

Намотка

Технология намотки (навивки) наиболее проста по реализации и обеспечивает высокую производительность. Намотка может быть как периодической так и непрерывной. Технология намотки обеспечивает высокое качество внутренней поверхности трубы за счет её формования на наружной поверхности оправки, но качество наружной поверхности низкое по причине отсутствия снаружи формообразующих элементов. Для труб, используемых для транспортировки жидкостей и газов последнее обстоятельство не принципиально.

Известна намотка с использованием термореактивных (полиэфирные, эпоксидные, фенолформальдегидные и др. смолы) и термопластичных (полипропилен, полиэтилен, полиамид, полиэтилентерефталат и др.) полимерных связующих. При использовании термопластичных связующих возможны одностадийные и двухстадийные технологии намотки. При использовании одностадийной технологии процесс совмещения (пропитки) волокнистого наполнителя термопластичным связующим и намотка на оправку происходят последовательно на одной и той же технологической установке . При использовании двухстадийной технологии сначала в результате операции совмещения получают предварительно пропитанный материал (препрег) в виде нити, ленты, стренги. Затем полученный препрег снова разогревают и наносят на оправку.

Известно множество способов укладки армирующих стеклянных волокон, но промышленное применение нашли спирально-кольцевой, спирально-ленточный, продольно-поперечный и косослойный продольно-поперечный способы.

Спирально-кольцевая намотка

Способ впервые предложен и реализован фирмой Ameron (США) в 1960-х года для производства стеклопластиковых насосно-компрессорных труб. При спирально-кольцевой намотке (СКН) укладчик, представляющий собой кольцо с равномерно расположенными по окружности фильерами движется возвратно-поступательно вдоль оси вращающейся оправки. Такое движение обеспечивает укладку непрерывных на всей длине волокон с равным шагом вдоль винтовых линий. Варьируя соотношение скорости вращения оправки и поступательного движения укладчика можно изменять угол укладки волокон. На концевых участках трубы в зоне реверсирования укладчика угол укладки волокон уменьшают таким образом, чтобы они удерживались на поверхности оправки силами трения. За счет этого волокна сохраняют натяжение, приданное им укладчиком и после отверждения связующего арматура трубы становится напряженной, что улучшает физико-механические свойства изделия.

К достоинствам спирально-кольцевой намотки относятся:

  • высокая производительность по причине укладки за один проход большого количества волокон;
  • высокая прочность получаемых труб;
  • возможность получения равной прочности в кольцевом и осевом направлениях;
  • высокое значение осевого модуля упругости;
  • за счет предварительного натяжения арматуры связующее хорошо переносит растягивающие нагрузки без растрескивания;
  • возможность формирования со сложной формой образующего сечения, а также труб переменного диаметра;
  • возможность укладки стеклоровингов, состоящих из большого количества элементарных волокон (свыше 2400 текс);
  • при использовании разборной или разрушаемой оправки возможность формирования замкнутых оболочек (баллонов, корпусов ракетных двигателей).

По причине указанных преимуществ спирально-кольцевая намотка получила широкое распространение при изготовлении труб высокого давления (в частности насосно-компрессорных труб), конструкционных труб, композитных опор ЛЭП, корпусов ракетных двигателей твердого топлива.

Тем не менее данная технология имеет свои недостатки:

  • высокая сложность оборудования;
  • большая масса укладчика в сочетании с его быстрым возвратно-поступательным движением приводит к повышенным нагрузкам на приводы и направляющие механизмы;
  • сложность зарядки стекловолокна в нитепроводящий тракт;
  • значительное увеличение числа (до нескольких сот и даже тысяч) укладываемых волокон при намотке труб большого диаметра, что обуславливает необходимость применения большого количества фильер и других элементов нитепроводящего тракта;
  • по причине необходимости реверсивного движения укладчика относительно оправки спиральный способ мало пригоден для непрерывной намотки.

По причине указанных недостатков спирально-кольцевая намотка редко применяется для производства труб большого диаметра.

Спирально-ленточная намотка

По принципу спирально-ленточная намотка (СЛН) не отличается от спирально-кольцевой, однако укладчик формирует лишь узкую ленту, состоящую из нескольких десятков волокон. Сплошность армирования обеспечивается многократными проходами укладчика. Такая технология проще спирально-кольцевой и позволяет формировать трубы больших диаметров, но имеет ряд недостатков:

  • производительность способа существенно ниже по причине необходимости большого количества проходов укладчика;
  • укладка волокон неравномерная и рыхлая, что ухудшает физико-механические характеристики труб.

Тем не менее, спирально-ленточная намотка имеет широкое распространение в производстве труб общего назначения низких и средних давлений.

Продольно-поперечная намотка

При продольно-поперечной намотке (ППН) волокна, армирующие трубу в продольном и поперечном направлениях укладываются независимо друг от друга. При этом нет необходимости в реверсивном движении укладчика и такой способ пригоден для реализации непрерывной намотки. К достоинствам ППН следует отнести:

  • высокую производительность;
  • возможность изменять соотношение кольцевой и осевой арматуры в более широких пределах, чем при спиральных способах;
  • возможность реализации непрерывной намотки;
  • непрерывность осевых волокон и возможность их натяжения, в результате чего физико-механические характеристики труб получаются не хуже чем при спиральных способах.

Недостатки ППН:

  • Необходимость применения вращающегося укладчика продольных волокон, что усложняет оборудование;
  • В случае больших диаметров труб необходимость размещения большого числа катушек с волокнами во вращающемся укладчике.

Продольно поперечная намотка нашла широкое применение в поточном производстве стеклопластиковых труб малых диаметров (до 75 мм).

Косослойная продольно-поперечная намотка

Технология была разработана в СССР в для массового производства стеклопластиковых корпусов реактивных снарядов. За пределами России и Украины малоизвестна. В России - наоборот, была широко распространена до середины 2000-х годов. При косослойной продольно-поперечной намотке (КППН) укладчиком формируется псевдолента, состоящая из параллельного пучка пропитанных связующим волокон, наматываемого под небольшим углом на поверхность оправки (образуя кольцевую арматуру), который предварительно обматывается непропитанными волокнами, образующими после укладки осевую арматуру. Псевдолнента укладывается на оправку с нахлестом на предыдущий виток. После укладки на оправку слои псевдоленты прикатываются роликами, наружная поверхность которых имеет винтовые линии. Прикатка роликами уплотняет слой арматуры, удаляя лишнее связующее. В результате этого укладка волокон получается очень плотной, а слой связующего между ними имеет минимальную толщину, что положительно сказывается на прочности стеклопластика и снижает его горючесть. Благодаря прикатке удается получить содержание стекла в отвержденном стеклопластике 75%-85% по массе - результат недостижимый для других способов (СКН дает содержание стекла порядка 65%, а СКЛ и ППН - 45%-60%). Варьируя нахлест, можно изменять толщину стенки трубы, укладываемую за один проход. Такой способ позволяет реализовывать непрерывную намотку, а также намотку труб большого диаметра малым числом одновременно укладываемых волокон.

К достоинствам КППН следует отнести:

  • очень высокую производительность, особенно при намотке труб больших диаметров (свыше 150 мм);
  • возможность намотки труб сколь угодно больших диаметров (теоретически - до бесконечности);
  • возможность непрерывной намотки;
  • очень высокую плотность укладки волокон;
  • низкую горючесть полученного стеклопластика;
  • возможность варьирования в широких пределах соотношения кольцевого и осевого армирования;
  • отсутствие сплошной осевой арматуры, что улучшает диэлектрические свойства стеклопластика.

К недостаткам КППН относятся:

  • возможность межслойного растрескивания, что не позволяет создавать по данной технологии трубы высокого давления;
  • использование прикаточных роликов осложняет применение быстрозатвердевающих связующих;
  • отсутствие предварительного натяжения осевой арматуры снижает модуль упругости стеклопластика.

Намотка стеклотканью

Намотка стеклотканью используется сравнительно редко, по причине более высокой стоимости стеклоткани по сравнению с неткаными волокнами. По технологическим свойствам намотка стеклотканью близка к КППН и иногда используется для мелкосерийного изготовления крупногабаритных труб.

Центробежное формование

В 1957 году в швейцарском городе Базель, зародилась идея, использовать центробежное литье для производства стеклопластиковых труб (CC-GRP - Centrifugally Cast Glassfiber Reinforced Plastic). Данная технология была впервые разработана, применена и получен патент компанией HOBAS

При этом способе материалы, составляющие стенку трубы, подаются фидером, управляемым цифровым контроллером, во внутреннюю часть быстро вращающейся стальной формы.

Состав материалов – это полиэфирная смола, рубленый ровинг из стекловолокна, кварцевый песок и мраморная мука.

Внутренний диаметр вращающейся формы является внешним диаметром готовой стеклопластиковой трубы. Это дает возможность получать трубу с точностью внешнего диаметра 0.1 мм.

Данный метод позволяет также делать стенку трубы более однородной и монолитной, избегать газообразных включений и расслоений.

Так как отлить стенку трубы можно практически любой толщины, то композитные изделия повышенной кольцевой жесткости

(более SN 12 000 n/м² и выдерживающие высокие осевые нагрузки трубы для микротоннелирования изготавливаются преимущественно этим способом.

Пултрузия

Пултрузия является высокопроизводительным способом производства стеклопластиковых труб и обеспечивает высокое качество наружной и внутренней поверхности. В то же время пултрузия имеет ряд ограничений:

  • сложность реализации кольцевого армирования;
  • сложность получения труб больших диаметров;
  • сложность технологической реализации по сравнению с намоткой;
  • необходимость применения специальных связующих с малым временем начального отверждения.

Пултрузия применяется для массового производства стеклопластиковых труб малых диаметров малых рабочих давлений сантехнического и отопительного назначения, а также в производстве стеклопластиковых удилищ.

Экструзия

Экструзионные стеклопластиковые трубы не имеют сплошного регулярного каркаса арматуры. Связующее наполняется хаотично ориентированным рубленным стеклянным волокном. Такая технология проста и высокопроизводитела, но отсутствие сплошного армирование существенно ухудшает физико-механические характеристики труб. В качестве полимерной матрицы у экструзионных стеклопластиковых труб используются, в основном, термопласты (полиэтилен, полипропилен).

Применение и эксплуатационные особенности

Актуальность и экономическая целесообразность применения стеклопластиковых труб определяется рядом их эксплуатационных особенностей по сравнению с трубами других типов.

  • Стеклопластики характеризуются плотностью 1750-2100 кг/м 3 , при этом их прочность на растяжение лежит в пределах 150-350 МПа. Таким образом по удельной прочности стеклопластик сопоставим с качественной сталью и значительно превосходит по этому показателю термопластичные полимеры (ПНД, ПВХ).
  • Стеклопластик обладает высокой коррозионной стойкостью, так как стекло и отвержденные термореактивные смолы (полиэфирная, эпоксидная), входящие в его состав, обладают низкой реакционной способностью. По этому показателю стеклопластик существенно превосходит черные и цветные металлы и сопоставим с нержавеющей сталью.
  • Стеклопластик является трудногорючим, трудновоспламеняемым самозатухающим материалом с высоким значением кислородного индекса , так как негорючее стекло составляет в массе стеклопластика значительную долю. По этому показателю стеклопластик превосходит гомогенные и наполненные термопластичные полимеры.
  • Стеклопластик является анизотропным материалом и его свойствами в заданных направлениях легко управлять, варьируя схему укладки волокон. Таким образом стеклопластиковые трубы могут быть выполнены с равным запасом прочности в осевом и кольцевом направлениях. В изотропных материалах при нагружении труб внутренним давлениям запас прочности в кольцевом направлении всегда в 2 раза меньше чем в осевом.
  • Предел текучести стеклопластика близок к пределу прочности, по этой причине стеклопластиковые трубы значительно менее эластичны, чем стальные или термопластичные.
  • Стеклопластик не сваривается. Соединения труб производятся с помощью фланцев, муфт, ниппель-раструбных соединений, клея.

Исходя из указанных особенностей сформировался ряд областей применения стеклопластиковых труб:

Нефтедобыча

В нефтедобывающей промышленности стеклопластиковые трубы находят применение по причине высокой коррозионной стойкости в агрессивных средах (пластовые воды, сырая нефть, буровые и технологические растворы) по сравнению со сталью и высокой удельной прочности по сравнению с термопластичными полимерами.

Из стеклопластика изготавливают насосно-компрессорные и линейные (систем ППД) трубы диаметром до 130 мм на рабочие давления до 30 МПа, трубы для нефтесборных трубопроводов диаметром до 300 мм на рабочие давления до 5 МПа, трубы магистральные диаметром до 1200 мм на рабочие давления до 2,5 МПа.

Угольная промышленность

В угольной промышленности существуют ограничения на применяемые в закрытых горных выработках материалы. Так правила безопасности в угольных шахтах устанавливают, что изделия из неметаллических материалов, находящиеся в закрытых горных выработках должны иметь кислородный индекс не менее 28%, быть трудногорючими, трудновоспламеняемыми (согласно ГОСТ 12.1.044), а продукты их горения не должны быть высокотоксичными. По указанным причинам применение полиэтиленовых и полипропиленовых труб в угольных шахтах невозможно. В то же время, стеклопластиковые трубы этим требованиям отвечают. Применение в шахтах стеклопластиковых труб целесообразно по ряду причин:

  • малая масса, что весьма актуально, поскольку шахтные трубопроводы имеют большие диаметры (150 - 1200 мм) и монтируются, как правило, вручную;
  • коррозионная стойкость в рудничной атмосфере;
  • гладкая внутренняя поверхность, снижающая образование отложений угольной пыли и другой пыли, неизбежно присутствующей в транспортирумых средах;
  • безопасность при взрывах метана, поскольку разрушение стеклопластика происходит без образования травмоопасных осколков.

Жилищно-коммунальное хозяйство

Стеклопластиковые трубы нашли применение в ЖКХ, в основном, в качестве канализационных. Это связано с тем, что трубы канализации имеют диаметры порядка 600 - 2500 мм,работают без внутреннего давления в условиях внешних нагрузок от грунта и давления грунтовых вод. Высокая кольцевая жесткость стеклопластика позволяет создавать трубы для указанных условий.

Еще одним применение стеклопластиковых труб в ЖКХ являются мусоропроводы. В последние 10-15 лет стеклопластиковые трубы находят применение и в качестве дымовых на газовых котельных и ТЭЦ.

Стеклопластик представляет собой стеклонаполненный материал композитного типа. В его состав входят связующее (в качестве которого применяется полиэфирная смола) и наполнитель (стекловолокно). Основное предназначение наполнителя заключается в армировании и придании материалу необходимой прочности. Благодаря добавлению полиэфирной смолы обеспечивается монолитность материала, защита стекловолокна от негативного воздействия агрессивных сред и максимально эффективное использование его прочности.

26.11.2014 г. 1862

Стеклопластик - это материал, характеризующийся небольшим удельным весом, имеющие достаточно широкий спектр сфер применения от ЖКХ до оборонки. Отличаясь малой теплопроводностью (приблизительно, как у дерева), высокой удельной прочностью (больше, чем у стали), влагостойкостью, биологической стойкостью и атмосферостойкостью, присущими полимерам, данный материал не имеет недостатков, которыми обладают термопласты. Это один из наименее дорогостоящих и самых доступных композиционных стройматериалов.

Основные затраты при изготовлении стеклопластиковых изделий, как правило, приходятся на оборудование и рабочую силу. Второй пункт затрат связан с трудоемкостью и значительными затратами времени. Таким образом, в настоящее время изделия из данного материала уступают в цене продукции из металла. Во многом это обусловлено сложностью и длительностью осуществления процедуры выклейки стеклопластиковых деталей, следствием чего становится возникновение серьезных препятствий при массовом производстве. Применение стеклопластика оказывается наиболее выгодным в случае с мелкосерийным производством. Высокая эффективность крупносерийного производства достигается при использовании технологии автоматической непрерывной намотки.

При изготовлении труб из стеклопластика, роль армирующих волокон обычно отводится ровингу либо стеклянной нити. Эпоксидные, полиэфирные смолы используются как связующее. Сегодня существуют два основных метода, которые находят применение при изготовлении стеклопластиковых труб: метод непрерывной намотки и метод центробежного формования.

Технология периодической намотки, которая была перенята с предприятий, функционирующих в сфере оборонной промышленности, не получила широкого распространения. Этим способом обычно пользуются при изготовлении труб из стеклопластика на эпоксидном связующем. Большая часть стеклопластиковых труб в мире производится по технологии непрерывной намотки волокна и связующего компонента на оправку. После завершения намотки труба затвердевает. Затем ее снимают с оправки, подвергают испытаниям и отправляют заказчику.

В этом случае труба производится с использованием «шагающей» оправки и реализуемой ступенчато процедуры охлаждения. Сектора оправки, которые перемещаются в продольном направлении, передвигают намотанную трубу через специальные печи, где проводится предварительная термическая обработка. Далее труба снимается с оправки. Окончательно затвердевание проводится в последующих печах. После этого полученная заготовка разрезается при помощи «алмазного» круга на куски требуемой длины.

Технологический процесс производства стеклопластиковых труб состоит в послойном нанесении на выполненную из стали оправку стекломатериалов, которые заранее пропитываются смолой «холодного» отверждения. При подборе типа смолы учитываются свойства жидкости, которую планируется транспортировать по трубопроводу. Схему армирования определяют путем проведения расчета, который следует выполнять согласно международных стандартов ASTM/AWWA, основываясь на заданных условиях установки и последующей эксплуатации трубопровода. После завершения полимеризации происходит образование инертной, монолитной, очень прочной структуры со стенкой, состоящей из нескольких слоев. Стеклопластиковый лайнер (внутренняя стенка) обеспечивает требуемую стойкость к влиянию агрессивных, а также абразивных сред, транспортируемых по трубопроводу, и герметичность.

Величина абсолютной шероховатости внутренней стенки равна 23 мкм. Силовой слой предназначен для обеспечения механической прочности при объединенном воздействии внешних и внутренних нагрузок во время эксплуатации трубопровода. Функцией внешнего слоя (его еще называют гель-коут) является обеспечение необходимой гладкости наружной поверхности трубы, влагостойкости, стойкости к влиянию химикатов, ультрафиолетового излучения, различных атмосферных явлений.

Технологическая линия производства стеклопластиковых труб по методу непрерывной намотки включает в себя секцию подачи ровинга, установку, предназначенную для подготовки связующего, ванну со связующим (через нее перемещаются и смачиваются нити ровинга), секцию намотки, оснащенную валами вращения (от размера последних зависит диаметр конечной продукции), а также органы, обеспечивающие управление всем оборудованием.

Трубы из стеклопластика, изготавливаемые по данной технологии, имеют целый ряд достоинств, среди которых следует отметить высокую удельную прочность, стойкостью к коррозии, небольшой вес, долговечность (срок эксплуатации до шестидесяти лет без проведения ремонта), надежность, малые затраты на установку и последующее обслуживание, высокую ремонтопригодность, небольшое гидравлическое сопротивление, гарантию сохранения чистоты транспортируемой продукции с точки зрения экологии.

Второй способ производства труб из стеклопластика - центробежное формование, был предложен фирмой Hobas. Технологический процесс изготовления труб по данной технологии происходит в направлении от внешней поверхности к внутренней, с использованием вращающейся формы. Сырьем для изготовления труб по этому методу служат рубленые волокнистые жгуты из стекла, песок и полиэфирная смола. Названные материалы подаются на вращающуюся матрицу. В итоге образование структуры трубы начинается с внешнего слоя. Во время изготовления происходит добавление в жидкую смолу наполнителя, стеклянного волокна и твердого сырья. Полимеризация смолы осуществляется под воздействием катализатора. Дополнительное ускорение данного процесса достигается за счет нагревания. Необратимость процедуры полимеризации обусловлена 3-хмерными пространственными химическими связями. Таким образом, материал в полной мере сохраняет пространственную стабильность, даже если температура окружающей среды бывает повышенной.

Стеклопластиковые трубы, выполненные по методу центробежного формования, находят применение при прокладке канализации, устройстве дренажа, сооружении трубопроводов, по которым транспортируется питьевая, техническая вода, промышленных трубопроводов, на гидроэлектростанциях и т.д.

Помимо этого, нужно отметить, что такие стеклопластиковые трубы могут использоваться с применением разных способов укладки. Сюда относятся: технология протаскивания, метод микротуннеля, метод надземной укладки и укладка открытым способом.

Благодаря комбинации положительных характеристик стекла и полимеров стеклопластиковые трубы получили практически безграничные перспективы применения – от обустройства вентканалов до прокладки нефтехимических трасс.

В этой статье рассмотрим основные характеристики труб из стеклопластика, маркировку, технологии изготовления полимерного композита и составы связующих компонентов, которые определяют сферу эксплуатации композита.

Также приведем важные критерии выбора, уделив внимание лучшим производителям, ведь немаловажная роль в качестве продукции отведена техническим мощностям и репутации изготовителя.

Стеклопластик – пластический материал, в составе которого есть стекловолокнистые компоненты и связующий наполнитель (термопластичные и термореактивные полимеры). Наряду с относительно невысокой плотностью стеклопластиковые изделия отличаются хорошими прочностными качествами.

Последние 30-40 лет стеклопластик массово применяется для изготовления трубопроводов разного назначения.

Полимерный композит является достойной альтернативой стекла, керамики, металла и бетона при производстве конструкций, рассчитанных на эксплуатацию в экстремальных условиях (нефтехимия, авиация, добыча газа, судостроение и т.п.)

Магистрали сочетают в себе качества стекла и полимеров:

  1. Малый вес. Средний вес стеклопласта составляет 1,1 г/куб.см. Для сравнения, этот же параметр по стали и меди гораздо выше – 7,8 и 8,9 соответственно. Благодаря легкости, облегчаются монтажные работы и транспортировка материала.
  2. Коррозийная стойкость. Составляющие композита имеют низкую реакционную способность, поэтому не подвергаются электрохимической коррозии и бактериальному разложению. Это качество – решающий аргумент в пользу стеклопласта для подземных инженерных сетей.
  3. Высокие механические свойства. Абсолютный предел прочности композита уступает показателю стали, но параметр удельной прочности значительно превосходит термопластичные полимеры (ПВХ, ПНД).
  4. Атмосферостойкость. Диапазон граничных температур (-60 °С..+80 °С), обработка труб защитным слоем из гелькоута обеспечивает невосприимчивость к лучам УФ-диапазона. Кроме того, материал стоек к ветру (предел – 300 км/ч). Некоторые производители заявляют о сейсмостойкости трубной арматуры.
  5. Огнеупорность. Негорючее стекло – главный компонент стеклопласта, поэтому материал трудновоспламеняем. При горении не выделяется отравляющий газ диоксин.

Стеклопластик имеет низкую теплопроводность, что объясняет его теплоизоляционные качества.

Недостатки композитных труб: подверженность абразивному износу, образование канцерогенной пыли вследствие механической обработки и высокая стоимость в сравнении с пластиком

По мере истирания внутренних стенок оголяются и обламываются волокна – частицы могут попадать в транспортируемую среду.

Галерея изображений